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of the I-V curve. Over 20 samples were measured, and
Fig. 1 shows the resistance vs temperature curves for rep-
resentative samples (those not shown here have similar be-
haviors and are omitted to reduce clutter). For each curve,
the first sharp drop is due to the superconducting transition
of the coevaporated thin film electrodes, which were un-
avoidably included in the measurements of the nanowires
and underwent a sharp transition at about 5–5.5 K. Since
transitions of the wires occur at lower temperatures and are
considerably broader, the measured resistance of a sample
below the film Tc can be attributed solely to the nanowire.
In particular, the normal state resistance of the wire (RN) is
taken to be the measured resistance just below the film Tc.
Note that any proximity effect on a wire from the super-
conducting banks is not significant, since Cooper pairs can
diffuse only a distance jN into a dirty normal metal, where
jN !

p

h̄D!2pkT , 8 nm for MoGe, much shorter than
our wires. (D ! 0.5 cm2!s is the diffusion constant [11].)

Our previous measurements of wires roughly 150 nm
long suggested that the wires were superconducting
(resistances decreased rapidly) if their total normal state
resistance RN , Rq, and insulating/metallic (resistances
barely changed with temperature) if RN . Rq, where
Rq ! 6.5 kV is the quantum resistance for pairs [10].
In contrast to this apparent simple dichotomy in the
previous results, the R-T curves in Fig. 1 display a broad
spectrum of behaviors, including some superconducting
samples with resistance as high as 40 kV (¿Rq). These
data on a more comprehensive set of samples lead to
a different conclusion from the previous results, since
it indicates that the relevant parameter controlling the
superconducting transition is not the ratio of Rq!RN , but

FIG. 1. Resistances as a function of temperature for eight dif-
ferent samples. The samples’ normal state resistances and lengths
are 1: 14.8 kV, 135 nm; 2: 10.7 kV, 135 nm; 3: 47 kV, 745 nm;
4: 17.3 kV, 310 nm; 5: 32 kV, 730 nm; 6: 40 kV, 1050 nm;
7: 10 kV, 310 nm; 8: 4.5 kV, 165 nm.

appears to be resistance per unit length, or equivalently,
the cross-sectional area of a wire. This is illustrated by the
solid lines in Fig. 2, which plots R!L vs t " T!Tc,film,
the temperature normalized to film Tc. Here resistances of
wider wires (RN!L , 20 V!nm) drop relatively sharply
below Tc,film, whereas the transition widths broaden
with increasing values of RN!L, and resistances of the
narrowest wires (RN!L . 80 V!nm) barely change with
temperature down to 1.5 K.

To understand this systematic broadening of the transi-
tions of the wires with decreasing cross-sectional area A,
we first consider the LAMH theory, which explains re-
sistive transitions in terms of proliferation of thermally
activated phase slips over a free-energy barrier DF pro-
portional to A. This leads to a resistance below Tc

RLAMH !
p h̄2V

2e2kT
e2DF!kT , (1)

where V ! #L!j$ #DF!kT$1!2#1!tGL$ is the attempt fre-
quency, and DF ! #8

p
2!3$ #H2

c !8p$Aj is the energy
barrier. In these expressions, L is the length of the wire,
HC and j are the thermodynamic critical field and the
coherence length of the material, T is the temperature, k
is the Boltzmann constant, and tGL ! %p h̄!8k#Tc 2 T$&
is the characteristic relaxation time in the time-dependent
Ginzburg-Landau theory. Equation (1) predicts negative
curvature of logR#T $ for all values of T and unmeasur-
ably small resistances for t ! T!Tc , 0.3 even for the
narrowest wires we measured; neither of these predictions
agree with the majority of the data.

This discrepancy between predictions of LAMH theory
and our data leads us to consider the possibility of MQT

FIG. 2. The solid lines are the data showing the measured re-
sistance per unit length vs normalized temperatures. The dotted
lines are curves calculated using Eq. (3) and sample parameters.
The two free parameters used are a ! 1.3 and B ! 7.2 for the
whole family of the curves.
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of phase slips. A heuristic argument due to Giordano
[4]suggests that the resistance from MQT follows a form
similar to (1), except that the appropriate energy scale is
h̄!tGL instead of kT . Therefore, we expect

RMQT ! B
p h̄2VMQT

2e2"h̄!tGL#
e2aDFtGL! h̄, (2)

where VMQT ! "L!j# $DF!"h̄!tGL#%1!2"1!tGL#, and a
and B are possible numerical factors of order unity. MQT
causes phase slips even as T ! 0 and results in experi-
mentally measurable resistance at all temperatures for suf-
ficiently narrow wires. Therefore the total resistance in the
superconducting channel will be RLAMH 1 RMQT. How-
ever, unless this is small compared to RN , current carried
by the parallel normal channel will significantly reduce the
observed resistance. To take account of this in a simple
way, we take the total resistance predicted by our model
to be

R ! $R21
N 1 "RLAMH 1 RMQT#21%21. (3)

To compare Eq. (3) directly with the data, we note that
the dominant exponential terms are determined by the
cross-sectional area A, which can be conveniently de-
scribed by a dimensionless parameter c relating the energy
barrier for phase slips to thermal energies near Tc,

c & DF"T ! 0#
kTC

!
8
p

2
3

Hc"0#2

8p

j"0#
kTc

A . (4)

Using standard BCS and Ginzburg-Landau relations for
dirty superconductors [15], this expression can be rewrit-
ten in terms of parameters that are more experimentally
accessible,

c ' 0.83
Rq

j"0#
L

RN
! 0.83

Rq

Rj"0#
, (4a)

where we have introduced the notation Rj"0# to refer to
the normal resistance of the wire in a length j"0#. For
the samples reported here, taking j"0# ! 5 nm [11], (4a)
yields values of c ranging from 8 to 39.

Using these values of c, we calculate the resistance of
the wires arising from both thermal and quantum phase
slips, as given in Eq. (3), with two adjustable parameters,
a and B [16]. (The calculated curves are also multiplied
by an overall factor 1.2 so that they can be compared
more easily with the data.) As shown by the dotted lines
in Fig. 2, these simulations reproduce the data quite well
when we take a ! 1.3 and B ! 7.2. The agreement is
rather remarkable since there are only two free parameters
for the entire family of curves.

The above model is based on a heuristic formulation.
However, in a recently developed microscopic theory by
Golubev and Zaikin [8], the MQT term follows an expo-
nential term identical to that in (2) (apart from factors of
order unity), but the prefactor has an additional factor of
a
p

c!0.83, which is about 7 on average for our samples.
This different prefactor given by the microscopic theory

provides a good explanation for the somewhat large value
of B obtained from our fits. Moreover, by introducing
small random fluctuations in the width (i.e., the values of
c) along a single wire, we are able to reproduce the occa-
sional crossing of the data curves as seen in samples 6 and
7 of Fig. 2.

We note that Eq. (3) cannot reproduce the data of sample
5 of Fig. 2 (and one other sample not shown here) ade-
quately for any choice of a and B. This may be attributed
to a number of mechanisms, such as depressed Tc [17],
unusually thin films, or inadvertent contamination. Never-
theless, since only 2 of the 20 samples show such anoma-
lous behaviors, and since a, the factor of order unity in the
dominant exponential term, is found through simulations
to be within 30% of unity, the agreement between the ma-
jority of the data and the model (3) is still quite remarkable.

This simple model considers only individual noninter-
acting quantum phase slips. This is supported by the theo-
retical work of Golubev and Zaikin [8], which argues that
interactions should not be important except in considerably
longer wires than those studied here.

To address the question of whether there is a well-
defined cutoff diameter, below which superconductivity is
excluded even at T ! 0, we plot the normalized sample
resistances at our lowest temperatures ((1.5 K) as a func-
tion of L!RN in Fig. 3. (The parameter L!RN , rather than
cross-sectional area A is used because L and RN are known
with much greater accuracy than the widths and profiles of
the wires, which would be needed to determine A geo-
metrically.) The linear plot in Fig. 3a suggests that there
is a transition from metallic to superconducting states at
L!RN ( 0.014 nm!V, corresponding to a sample width
of about 10 nm. This is numerically consistent with theo-
retical predictions of a critical width (10 nm [7]. How-
ever, the significance of this agreement is unclear in view
of Fig. 3b, which plots the same data points on a semilog
scale and demonstrates that there is no feature at any par-
ticular value of L!RN . In fact, Fig. 3b can be readily
understood in terms of MQT of phase slips at low tem-
peratures. The plot shows that resistances at T!Tc ( 0.3
decrease exponentially with L!RN . This is what we would
expect from Eq. (2) since DF ~ A ~ L!RN , and the con-
tribution (1) from thermally activated phase slips is negli-
gible at such low temperature. Quantitatively, if we neglect
the weak effect of the prefactor and consider only the ex-
ponential dependence in (2), the slope of the semilog plot
is calculated to be
≠ ln"RMQT!RN#

≠"L!RN #
! a 3 0.83

p

8
Rq

j"0#
' 0.54 kV!nm ,

(5)

where we have used a ! 1.3 obtained from the simulations.
Fitting the data points in Fig. 3b with an exponential func-
tion, we obtain a slope of 0.39 kV!nm, in reasonable
agreement with the expected value (5). Therefore our
simple model of quantum phase slips works remarkably
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Why?
Tc suppression in wires

RN >h/e2, superconductor-insulator transition?
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How?
Nanotube manipulation



Our wires

ξ: 10-30 nm Near 1D limit.

2. The superconductor: Amorphous InO

a:InO wires are superconducting

Magnetic field dependence

1. WS2 nanotubes - insulating. 

Width: 40-100 nm

Thickness: 20-30 nm

TEM

Amorphous InO



Comparing film and wire
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Disordered superconductors
M. Strongin, et. al., Phys. Rev. B1, 1078 (1970).

D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. 
Rev. Lett. 62, 2180 (1989)...

T = 0 transition

Review: Finkl’stein (‘94),
Markovic and Goldman (‘98).

2D



‘Good’ superconductor

5000

4000

3000

2000

1000

0

ρ  
(Ω
/ ❑

)

121086420
B (T)

Ta4/2
T=0.066-0.8 K
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The good, bad and ...
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Linear scale
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Log scale
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Power-law
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Power-law
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Power-law
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B

Bc
)T0/2T

T0/2 is close to Tc (0.9-2K)

Sambandamurthy et. al,
 Europhysics Letters 75, 611 (2006).

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

1/
Po

w
er

1.21.00.80.60.40.20

T (K)

Ta1/2,20,100mic
T0=4, 2.5, 1.8 K

Blatter et al., Rev. Mod. Phys. 66, 1125 (1994).

Vortices?
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Vortices and the superconductor-insulator transition

G. Sambandamurthy, A. Johansson, E. Peled, and D. Shahar
Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel,

P. G. Björnsson and K. A. Moler
Department of Applied Physics, Stanford University, Stanford, California 94305, USA

(Dated: October 19, 2004)

We present the results of a systematic study of thin-films of amorphous indium-oxide near the
superconductor-insulator transition. We show that the film’s resistivity follows a simple, well-
defined, power-law dependence on the perpendicular magnetic field. This dependence holds well-into
the insulating state. Our results indicate that vortices play a central role in the transport of our
films in the superconducting as well as insulating phases.

PACS numbers: 74.25.Fy, 74.78.-w, 74.25.Dw, 73.50.-h

At temperatures (T s) near the absolute zero,
the superconductor-insulator transition (SIT) in two-
dimensional systems is a dramatic phenomenon. Over
a rather narrow stretch of parameters, such as magnetic
field (B) or film thickness, the resistivity (ρ) swings from
being immeasurably low, essentially zero, to being expo-
nentially diverging with lowering T [1]. One does not
expect, given this large disparity in the behavior of ρ,
that a unified description of transport in these two op-
posing regimes should exist.

It is therefore surprising that a theoretical framework
was developed, in which this common description natu-
rally emerges [2, 3]. Since the insulator and the super-
conductor are two distinct T = 0 phases of the electronic
system, the SIT is considered as a quantum phase tran-
sition (QPT), driven by a parameter in the Hamiltonian
that can, in principle, be controlled in experiments [4].
Within this framework the resistivity, in both the su-
perconducting and insulating phases, is described by a
single universal scaling function that is expected to be
relevant in the vicinity of the transition. Evidence for,
and against, the validity of the QPT approach to real
samples has been reported in the literature [5–11].

The purpose of this Letter is to show that the resis-
tivity of our superconducting amorphous indium-oxide
(a:InO) films can be described by a single function cov-
ering a wide range of our measurements, which includes
the B-driven SIT. This function can be written as follows:

ρ(B, T ) = ρce
−U0/kBT = ρce

Tcln(Bc/B)
1
2 /kBT (1)

where ρc, Bc and T0 are sample-specific parameters.
The phenomenological form introduced above is con-

sistent with the collective-pinning model of transport
in thin superconducting films, which predicts a vortex-
pinning energy proportional to ln(B) [12]. This form has
been observed before in high-Tc layered systems [13, 14]
as well as in amorphous superconductors [15–17]. The
new result of our work is that this behavior is not re-
stricted to the superconducting phase but continues, un-
interrupted, well-into the insulating state.

Our data were obtained from a detailed study of dis-
ordered thin-films of a:InO. The films were prepared by
e-gun evaporating high purity (99.999 %) In2O3 on clean
glass substrates in a high vacuum system. The thick-
ness was measured in-situ by a Quartz crystal thickness
monitor. Lithographic techniques were used to pattern
the films to Hall-bars with voltage probe separation twice
the with of the Hall-bar. Samples with widths ranging
from 2 µm to 500 µm were used in this study. Resis-
tance measurements were carried out in the four-probe
configuration by low frequency AC lock-in techniques,
with excitation currents of 10 pA–10 nA. The samples
were cooled either in a dilution refrigerator with base T
of 0.01 K or in a He-3 refrigerator with base T of 0.25 K.

In Figure 1 we show ρ vs. B taken at several T s be-
low Tc which for this sample was 2.2 K. A clear and
well-defined crossing of the various ρ isotherms is evi-
dent at B = 7.31 T. This point, termed Bc, has been
traditionally associated with the SIT. This is a natural
viewpoint, for several reasons. First, since the determina-
tion of the phase of the system is done by extrapolating
the T -dependence ρ data to T = 0, a B value where
the temperature coefficient of resistivity changes sign at
low T s is taken to indicate the phase transition point.
The existence of a sharp and well-defined crossing point,
which is the second point, is in accordance with theo-
retical predictions. Third, also in agreement with theory,
scaling behavior near the crossing B-point, observed over
a limited T range, has been reported by several groups
[6, 8, 9, 18].

The fourth point can be seen in Figure 2, where we plot
the ρ value at Bc, ρc, obtained from all our superconduct-
ing samples that exhibited a well-defined crossing point.
As can be seen, the data are scattered around 5.8 kΩ and,
with a standard deviation of 1.8 kΩ, they are consistent
with the theoretically accepted value of h/4e2, the quan-
tum resistance for a Cooper-pair. This value is in good
agreement with other results in the literature [5, 6] with
the notable exception of experiments done on MoGe [7].
Taken together these points present a compelling case for
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the validity of the QPT approach and to the identifica-
tion of Bc with the transition point.

A central assumption that underlies the QPT approach
to the B-driven SIT problem is that, on a microscopic
level, the nature of the transport process is not signif-
icantly altered as one crosses the transition B into the
insulating phase. In other words this means that, lo-
cally, superconductivity must persist beyond the transi-
tion. According to Fisher [2], the transition is manifested
by a change in the macroscopic vortex-state, and Cooper
pairs must still exist, albeit localized, in the insulating
phase to support the formation of vortices. While previ-
ous experiments designed to test this assumption resulted
in conflicting conclusions [19–21], we will argue below
that our results are in strong support of its validity.

We begin by taking, for the moment, the standpoint
in which the transition to the insulator coincides with
the complete disappearance of superconductivity in the
film, i.e., Bc = Hc2. We next show that this standpoint
leads to a conflict with the experimental results, requir-
ing a nonphysically large variation in the value of ξ, the
superconducting coherence length.

Consider the data presented in Figure 2 that, aside
from being consistent with a universal value of ρc, have
the following implication. These data were obtained from
43 samples, spanning a range of disorder that, although
hard to quantify, can be specified by the normal-state
resistivity of the samples, RN . For our superconducting
samples, RN and therefore the mean free path l change
by no more than 50%. Through the relation ξ =

√
ξ0l, we

conclude that the variation in ξ are limited to less than
25%. The contradiction with the Bc = Hc2 assumption
arises when we recall that Hc2 = Φ0

2πξ2 ∝ l, which clearly
can not account for more than two orders of magnitude
variation in the observed Bc. We therefore conclude that
the crossing point at Bc is at much lower field than the
superconducting critical field Hc2.

This brings up the question of the identifications of Hc2

in high-disorder, thin-film superconductors. In Figure 3
we present ρ vs. B at several T ’s obtained from a lower
disorder sample. Two features are notable in this graph.
First, superconductivity survives to a large B, around
11 T, and second, the crossing point of the ρ isotherms
is clearly not present, the transition being smeared over
approximately 1.5 T. This smearing is expected for the
thermodynamic Hc2 which should depend on T . We also
note that the critical B seem to have a limiting value in
our a:InO samples of around 12 T. In a recently pub-
lished Letter [22], we provided evidence to the existence
of a relation between the superconductor Tc and TI , the
temperature which characterize the transport in the B-
induced insulating state terminating the superconducting
phase. We found that the B position of the insulating
peak is only weakly dependent on disorder and appears
in the range of 8-12 T. A possibility therefore exists that
the true Hc2 of our films is near this value.

We next perform a quantitative analysis of the B and
T -dependence of our resistivity data, which will lead us
to the central result of our work. In Figure 4 we again
plot ρ vs. B at various T ’s for two of our samples, but this
time we use log-log graphs. For the sample in Figure 4b
we took special care to extend our measurements over a
large range of ρ. Each curve is well-described by a power-
law dependence that holds over more than 2 orders of
magnitude in B and more than 3 in ρ, with non-random
deviations that are only seen at high T ’s and as the B
values approach the insulating peak. The different curves
are distinguished by their power, which is a function of
T . Our entire data can be summarized by the following
expression:

ρ(B, T ) = ρc(
B

Bc
)P (T ). (2)

To delineate the form of P (T ) it is convenient to plot its
inverse vs. T , see Figure 5. A linear description best
fits the data, with the parameter T0 being close to twice
the value of Tc of the film at B = 0. The final form is
presented in Eq. 1. The parameters for the three samples
shown in Figure 5 are presented in Table I.

This leads us to a discussion on the origin of the be-
havior of Eq. 2. A power-law B-dependence of ρ in
two-dimensional superconductors is associated with the
collective-pinning flux-creep transport model, predicting
an activation (pinning) energy, U0, that depends loga-
rithmically on B [12]:

U0 = kBT0ln(B/Bc)
−

1

2 . (3)

This, in association with activated transport, leads to a
form similar to Eq. 2. Similar behavior was observed
in disordered thin-films [15–17] and in layered high-Tc

compound [13, 14], and may be indicative of the central
role played by vortices in our system. Again, the central
intriguing feature in our results is that the power-law
behavior described by Eq. 2 continues, uninterrupted,
through Bc and into the insulating state.

Inspecting Figure 5 reveals another aspect of the data
related to the limiting low-T behavior. Below 0.2 K,
1/p(T ) deviates from its high-T linear dependence and
seems to saturate. This directly implies a saturation of
ρ(B, T ) at low-T , similar to that observed by Ephron et

al. in MoGe [17]. At present we are unable to ascertain
the source of this saturation in our samples.

In summary, although our observation that the behav-
ior represented by Eq.1 straddles both sides of Bc lends
support to the validity of the central assumption of the
QPT approach, it does not constitute a verification of
the QPT theory as it applies to the SIT. It may, in fact,
question the identification of the crossing-point of the ρ
vs. B isotherms with the SIT. Much more experimental
effort is needed in order to establish the relevance of this
approach to physical samples.
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Quantum-Hall effect...
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Properties of the insulator
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Dirty-boson model

M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

T=0 Vortices condense =
Cooper-pairs localize
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FIG. 1: Sheet resistance (ρ) as a function of B, from sample
Ba12/30, measured at T = 0.04, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 K. B is applied perpendicular
(a) or parallel (b) to the surface of the film. The current in
(b) is at approximately 45 degrees orientation to B.

with higher B⊥
c , which have a lower level of disorder, ε

approaches unity, indicating a nearly isotropic Bc.
To further investigate the orientation dependence of

Bc, we followed its evolution as a function of the angle of
B with respect to the plane of our films, θ. The results,
plotted in Fig. 3, show that if one film has a B⊥

c larger

than another, it will also have a larger B||
c , although by

a smaller factor. In other words, B||
c shows a weaker

dependence on the level of disorder than B⊥
c .

The angular dependence of Bc, Bc(θ), for the SIT was
considered by Meir and Aharony [10], using a percolation
approach to the SIT. Within their model they predict the
following form for Bc(θ):

[
Bc(θ) sin θ

B⊥
c

]2 + [
Bc(θ) cos θ

B||
c

]2 = 1. (1)

The dashed lines in Fig. 3 are plots of this function,
without any fitting parameters except for the Bc val-
ues obtained from the isotherms crossing-points. Inci-
dentally, a similar form was derived by Lawrence and
Doniach [11] who modified, for layered superconductors,
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of the film. Dashed lines correspond to fits to Eq. 1.

the earlier work of Tinkham and Harper [12, 13] that was
based on solving a linearized Ginzburg-Landau equation
applicable near Hc2. We emphasize that, for our samples,
Bc is substantially lower than Hc2 [14].

The diminishing anisotropy for samples with higher
B⊥

c (and Tc) appears, on first sight, to be a result of
the decreasing amount of disorder and the consequential
strengthening of superconductivity. However, a detailed
study of the angular dependence of ρ in a given sam-

ε =
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FIG. 4: (a) ρ vs. B from sample Ba12/30. The traces differ
in angle θ between the plane of the sample and B. The θ’s are
0 (red), 1, 3, 5, 7, 10, 15, 25, 45, 70, and 90 (purple) degrees.
All traces were taken at T=0.6 K. Inset: ρ is isotropic at the
crossing point at B=11.02 T. (b) ρ(θ) replotted vs. B sin(θ).
The θ’s are from the left 1 (red), 3, 5, 7, 10, 15, 25, 45, 70, and
90 (purple) degrees. ρ(90) is fitted to a power law dependence
(black, dashed line). Diamonds mark where total B is 2 T,
corresponding to the vertical dashed line in (a).

ple reveals a different picture. In Fig. 4(a) we plot the
resistive response to B applied at several values of θ,
obtained from one of our samples. The data presented
are at a relatively high T of 0.6 K avoiding, for the mo-
ment, the strong insulating peak that appear at low T
in disordered superconductors beyond the SIT [7, 15–
17]. The data, spanning from perpendicular to parallel
B, show a strong anisotropy at lower B that is succes-
sively weakened as B increases until, at a sample specific
and well-defined Biso(= 11.02 T for this sample), ρ is
independent of θ. At B > Biso, the dependence on an-
gle is reversed and ρ has a larger value for parallel B
than for perpendicular B. The weakening (and reversal)
of the anisotropy with increasing B raises the possibil-
ity of reinterpreting the diminishing anisotropy in Fig. 2
as resulting, not from the decrease in disorder but, from
the increase of B where the transition takes place: Even
in a given sample, with a fixed amount of disorder, the

anisotropy diminishes at high B.
Although not sharply defined, we can identify two

regimes with respect to the θ dependence of the mag-
netoresistance: A low-B regime where ρ is strongly
anisotropic and a high-B range where the anisotropy is
not pronounced and even changes sign. Somewhat arbi-
trarily we use the B at which we first detect resistance
for θ = 0 as the border between the two regimes. We
next consider these two regimes separately.

Restricting the discussion to B < 2 T, to the left of
the vertical dashed line in Fig. 4(a), we find that ρ(θ)
depends only on the perpendicular component of B. We
demonstrate this in Fig. 4(b) by replotting ρ(B) in (a) as
a function of B sin(θ). The trace taken in perpendicular
B is plotted as a purple, solid line and displays a good
fit to an earlier reported [7] power law dependence on B
(black, dashed line). The remaining traces with a B de-
pendence rescaled by sin(θ) are shown as dashed curves
with the color code as in Fig. 4(a). The point at which
the total B equals 2 T is marked for each trace by a di-
amond with the same color as the trace itself. Plotted
this way, the ρ(B) traces taken at different θ values fol-
low, within error, the ρ(B) data for perpendicular field,
demonstrating ρ’s dependence on the normal component
of B alone.

Upon increasing B for the sample in Fig. 4(b) beyond
2 T, the data no longer collapse on the perpendicular
resistance curve. It is clear that one needs to introduce
the effect of the non-vanishing parallel component. Try-
ing to do this we encounter two difficulties. First, the
parallel component can not be simply introduced in a
fashion similar to the perpendicular component because
it does not scale with cos(θ) as we might expect if it
was orbital in nature. In fact, the best fit to the data
was obtained by assuming that the resistance that we
measure at parallel B (when the perpendicular contri-
bution vanishes within error) is an isotropic component
that contributes at all B orientations. That brings us to
the second difficulty: attempting a decomposition into
an isotropic and anisotropic (proportional to sin(θ)) com-
ponents yields only approximate success pointing to the
possibility that the two mechanisms are not independent.

By dividing our B range into two regimes we already
alluded to the possibility that two distinct physical mech-
anisms are responsible for the resistance of our supercon-
ducting films in the presence of B. At low B a purely or-
bital component proportional to sin(θ) is present, which
have many characteristics that can be associated with
vortices [14]. We stress that the SIT in perpendicular B
can take place in this low B regime in which the parallel
B component is still negligible (see Fig. 4(a)).

The higher B range is dominated by the isotropic re-
sistance component. In this range, at B typically above
2-4 T in our samples, the system enters a strongly insu-
lating peak at low T , that gives way to a lower resistance
state at yet higher B values. We next examine the θ
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FIG. 4: (a) ρ vs. B from sample Ba12/30. The traces differ
in angle θ between the plane of the sample and B. The θ’s are
0 (red), 1, 3, 5, 7, 10, 15, 25, 45, 70, and 90 (purple) degrees.
All traces were taken at T=0.6 K. Inset: ρ is isotropic at the
crossing point at B=11.02 T. (b) ρ(θ) replotted vs. B sin(θ).
The θ’s are from the left 1 (red), 3, 5, 7, 10, 15, 25, 45, 70, and
90 (purple) degrees. ρ(90) is fitted to a power law dependence
(black, dashed line). Diamonds mark where total B is 2 T,
corresponding to the vertical dashed line in (a).

ple reveals a different picture. In Fig. 4(a) we plot the
resistive response to B applied at several values of θ,
obtained from one of our samples. The data presented
are at a relatively high T of 0.6 K avoiding, for the mo-
ment, the strong insulating peak that appear at low T
in disordered superconductors beyond the SIT [7, 15–
17]. The data, spanning from perpendicular to parallel
B, show a strong anisotropy at lower B that is succes-
sively weakened as B increases until, at a sample specific
and well-defined Biso(= 11.02 T for this sample), ρ is
independent of θ. At B > Biso, the dependence on an-
gle is reversed and ρ has a larger value for parallel B
than for perpendicular B. The weakening (and reversal)
of the anisotropy with increasing B raises the possibil-
ity of reinterpreting the diminishing anisotropy in Fig. 2
as resulting, not from the decrease in disorder but, from
the increase of B where the transition takes place: Even
in a given sample, with a fixed amount of disorder, the

anisotropy diminishes at high B.
Although not sharply defined, we can identify two

regimes with respect to the θ dependence of the mag-
netoresistance: A low-B regime where ρ is strongly
anisotropic and a high-B range where the anisotropy is
not pronounced and even changes sign. Somewhat arbi-
trarily we use the B at which we first detect resistance
for θ = 0 as the border between the two regimes. We
next consider these two regimes separately.

Restricting the discussion to B < 2 T, to the left of
the vertical dashed line in Fig. 4(a), we find that ρ(θ)
depends only on the perpendicular component of B. We
demonstrate this in Fig. 4(b) by replotting ρ(B) in (a) as
a function of B sin(θ). The trace taken in perpendicular
B is plotted as a purple, solid line and displays a good
fit to an earlier reported [7] power law dependence on B
(black, dashed line). The remaining traces with a B de-
pendence rescaled by sin(θ) are shown as dashed curves
with the color code as in Fig. 4(a). The point at which
the total B equals 2 T is marked for each trace by a di-
amond with the same color as the trace itself. Plotted
this way, the ρ(B) traces taken at different θ values fol-
low, within error, the ρ(B) data for perpendicular field,
demonstrating ρ’s dependence on the normal component
of B alone.

Upon increasing B for the sample in Fig. 4(b) beyond
2 T, the data no longer collapse on the perpendicular
resistance curve. It is clear that one needs to introduce
the effect of the non-vanishing parallel component. Try-
ing to do this we encounter two difficulties. First, the
parallel component can not be simply introduced in a
fashion similar to the perpendicular component because
it does not scale with cos(θ) as we might expect if it
was orbital in nature. In fact, the best fit to the data
was obtained by assuming that the resistance that we
measure at parallel B (when the perpendicular contri-
bution vanishes within error) is an isotropic component
that contributes at all B orientations. That brings us to
the second difficulty: attempting a decomposition into
an isotropic and anisotropic (proportional to sin(θ)) com-
ponents yields only approximate success pointing to the
possibility that the two mechanisms are not independent.

By dividing our B range into two regimes we already
alluded to the possibility that two distinct physical mech-
anisms are responsible for the resistance of our supercon-
ducting films in the presence of B. At low B a purely or-
bital component proportional to sin(θ) is present, which
have many characteristics that can be associated with
vortices [14]. We stress that the SIT in perpendicular B
can take place in this low B regime in which the parallel
B component is still negligible (see Fig. 4(a)).

The higher B range is dominated by the isotropic re-
sistance component. In this range, at B typically above
2-4 T in our samples, the system enters a strongly insu-
lating peak at low T , that gives way to a lower resistance
state at yet higher B values. We next examine the θ
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Superconductor-Insulator Magneto-Oscillations in Superconducting Strips

Yeshayahu Atzmon1 and Efrat Shimshoni1
1Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

(Dated: October 5, 2010)

The magnetoresistance of thin superconducting (SC) strips subject to a perpendicular magnetic
field B and low temperatures T manifests a sequence of alternating SC–insulator transitions (SIT).
We study this phenomenon within a quasi one-dimensional (1D) model for the quantum dynamics
of vortices in a line-junction between coupled parallel SC wires, at parameters close to their SIT.
Mapping the vortex system to 1D Fermions at a chemical potential dictated by B, we find that a
quantum phase transition of the Ising type occurs at critical values of the vortex filling, from a SC
phase near integer filling to an insulator near 1/2–filling. For T → 0, the resulting magnetoresistance
R(B) exhibits oscillations similar to the experimental observation.

PACS numbers:

The conduction properties of low–dimensional super-
conducting (SC) systems (thin films and wires) are
strongly dominated by fluctuations in the SC order pa-
rameter. A particularly prominent manifestation of the
role of fluctuations is the appearance of a finite dissi-
pative resistance below the mean–field critical tempera-
ture Tc of the bulk superconductor. At low temperatures
T ! Tc, the dominant fluctuations are in the phase of
the complex order parameter. Most notably, topological
excitations (vortices and phase–slips) can generate dis-
sipation in their liquid state. In the T → 0 limit, their
quantum dynamics becomes significant and may drive a
transition to a metallic or insulating state [1, 2].

In the one–dimensional (1D) case, i.e. SC wires of
width and thickness smaller than the coherence length ξ,
the resistance essentially never vanishes at finite T due
to thermal activation of phase–slips [3, 4] (for T ! Tc)
or their quantum tunneling at lower T [2, 5, 6]. In con-
trast, in the 2D case (SC films) superconductivity is well-
established at sufficiently low T . However, a quantum
(T → 0) superconductor–insulator transition (SIT) [1, 7]
can be tuned by an external parameter which leads to
proliferation of free vortices. Employing charge–flux du-
ality [8] it is possible to view the SC phase as a vortex
solid, and the insulator as a vortex superfluid.

A convenient means of inducing a SIT in SC films
is by application of a perpendicular magnetic field B.
At fixed T , a positive magnetoresistance R(B) is typi-
cally observed in a wide range of B. The SIT is then
clearly indicated in the data as a crossing point of these
isotherms at a critical field Bc, separating a SC phase
(where dR/dT > 0) for B < Bc from the insulating phase
(dR/dT < 0) for B > Bc.

A recent experimental study of a strip geometry [9]
– namely, a SC wire of width comparable to ξ – offers
an opportunity to probe the crossover from a 1D to 2D
quantum dynamics of the topological phase–defects in SC
devices. The prominent observation is that in the pres-
ence of a perpendicular field B, the magnetoresistance
R(B) exhibits oscillations which amplitude is sharply in-
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FIG. 1: (color online) Isotherms of R as a function of B,
for J = 1.06K, h = 0.98K, v

−
/L = 0.01K [see text]. Inset:

R vs. the gap ∆d [see text] near a single critical point, for
T = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5K.

creasing at low T , in striking resemblance to the behavior
of Josephson arrays [10] and SC network systems [11].
Moreover, the SIT at Bc appears to be preempted by
several consecutive transitions at lower fields, from a SC
to an insulator or vice versa alternately.

The periodicity of the above mentioned oscillations is
consistent with a single flux penetration to the sample,
suggesting that the observed SC or insulating behavior
of the system is determined by commensuration of vor-
tices within the strip area [12]. In particular, when an
integer number of vortices can be fitted along the strip
length, superconductivity may be supported even at suf-
ficiently high B such that a large fraction of the sample
area turns normal. However deviation from commensu-
rability of the vortex filling weakens superconductivity,
possibly inducing a transition to a metallic [10] or insu-
lating state.

In the present paper, we investigate this phenomenon
within a theoretical model for vortices in a SC strip which
addresses the low T transport behavior close to the SIT
(i.e., for B ! Bc). Assuming that the high vortex den-
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Recent experiments on the conductance of thin, narrow superconducting strips found periodic
fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to
approximately two flux quanta per strip area [1]. We argue that the low-energy degrees of freedom
that lead to dissipation correspond to vortex motion. Using vortex-charge duality, we show that
the superconducting strip behaves as the dual of a quantum dot, with vortices playing the role of
the electrons, the magnetic field appearing as the gate voltage, and the bias current replacing the
source-drain voltage. In the bias-current vs. magnetic-field plane, the strip conductance displays
“Weber” blockade diamonds, with vortex conductance maxima (i.e., electrical resistance maxima)
at small bias currents corresponding to fields at which configurations having N and N + 1 vortices
have equal energy.

Introduction – It is often effective to characterize

strongly correlated quantum systems in terms of the

emergent, collective freedoms that describe their low-

energy behavior. Vortices in superconductors consti-

tute the most prominent example of such freedoms, and

it has proven useful to address the Kosterlitz-Thouless

phase transition exhibited by thin-film superconductors

in terms of the statistical mechanics of an interacting

plasma of such vortices. The superfluid-insulator quan-

tum phase transition—exhibited by quite a number of

systems [2–4], particularly the granular InO films [5, 6]—

is widely suspected to result from a vortex prolifera-

tion transition. If so, this behavior would provide a

convincing demonstration of vortices behaving quantum-

mechanically: not only do they exhibit quantal motion as

individuals [7], they are also able to Bose-Einstein con-

dense.

Motivated by recent experiments reported by the Sha-

har group on InO strips [1], which exhibited oscillations

in the resistance as a function of magnetic field, in this

paper we approach such oscillations from the vortex point

of view, and show that the notion of a “vortex blockade”

allows us to explain such conduction oscillations, in anal-

ogy with the Coulomb blockade theory that has been

applied widely to electrons in quantum dots. Our ap-

proach will be applied to the case of a vortex blockade in

narrow strips. By using charge-vortex duality, together

with energetics arguments, we show that a vortex block-

ade results in a series of “Weber” diamonds, which are

analogs of the Coulomb-blockade diamonds, except for

the important distinction that the electrical conductiv-

ity is maximal (rather than minimal) inside the Weber

diamonds. We then apply the Beenakker formalism, de-

veloped to account for dissipation in a quantum dot [8],

to the case of a superconducting strip, with the dissipa-

tion being provided via the normal modes of the vortex

‘crystal’ in the strip. Within this dissipative model, we

predict that the resistivity of the strip should diverge—

possibly observably—at low temperatures, as a power

law. We conclude with a comparison of our results with

experimental data, and thus show that our energetic con-

siderations correctly account for period of the magneto-

resistance oscillations observed experimentally.
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FIG. 1: (a) Schematic representation of the experimental
setup. A superconducting strip (gray) is immersed in a mag-
netic field B pointing out of the plane of the strip. The strip
is contacted by a pair of leads (blue) that are used to pass the
bias supercurrent J along the length of the strip. Simultane-
ously, the time-averaged voltage is measured using the same
leads. Vortices (depicted by swirls) reside in the strip but,
occasionally, traverse the strip (cf. the vortex trajectory de-
picted by arrows). Via the Josephson relation, such crossings
correspond to voltage spikes, and thus result in dissipation.
(b) Analogous quantum-dot circuit. The dot is depicted by
the gray disc. The vortices and the magnetic field in the strip
respectively correspond to the electrons and the gate voltage
Vg of the dot, the latter controlling the mean number of parti-
cles on the dot. The source and drain for the vortices are the
vacua adjacent to the strip. These vacua can be regarded as
vortex condensates (green), with the potential energy differ-
ence between the condensates set by the bias current. Thus, J
in the vortex analogy corresponds to the source-drain voltage
VS − VD in the dot picture (see text for details).

Setup – We are concerned with describing the current-
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Recent experiments on the conductance of thin, narrow superconducting strips found periodic
fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to
approximately two flux quanta per strip area [1]. We argue that the low-energy degrees of freedom
that lead to dissipation correspond to vortex motion. Using vortex-charge duality, we show that
the superconducting strip behaves as the dual of a quantum dot, with vortices playing the role of
the electrons, the magnetic field appearing as the gate voltage, and the bias current replacing the
source-drain voltage. In the bias-current vs. magnetic-field plane, the strip conductance displays
“Weber” blockade diamonds, with vortex conductance maxima (i.e., electrical resistance maxima)
at small bias currents corresponding to fields at which configurations having N and N + 1 vortices
have equal energy.

Introduction – It is often effective to characterize

strongly correlated quantum systems in terms of the

emergent, collective freedoms that describe their low-

energy behavior. Vortices in superconductors consti-

tute the most prominent example of such freedoms, and

it has proven useful to address the Kosterlitz-Thouless

phase transition exhibited by thin-film superconductors

in terms of the statistical mechanics of an interacting

plasma of such vortices. The superfluid-insulator quan-

tum phase transition—exhibited by quite a number of

systems [2–4], particularly the granular InO films [5, 6]—

is widely suspected to result from a vortex prolifera-

tion transition. If so, this behavior would provide a

convincing demonstration of vortices behaving quantum-

mechanically: not only do they exhibit quantal motion as

individuals [7], they are also able to Bose-Einstein con-

dense.

Motivated by recent experiments reported by the Sha-

har group on InO strips [1], which exhibited oscillations

in the resistance as a function of magnetic field, in this

paper we approach such oscillations from the vortex point

of view, and show that the notion of a “vortex blockade”

allows us to explain such conduction oscillations, in anal-

ogy with the Coulomb blockade theory that has been

applied widely to electrons in quantum dots. Our ap-

proach will be applied to the case of a vortex blockade in

narrow strips. By using charge-vortex duality, together

with energetics arguments, we show that a vortex block-

ade results in a series of “Weber” diamonds, which are

analogs of the Coulomb-blockade diamonds, except for

the important distinction that the electrical conductiv-

ity is maximal (rather than minimal) inside the Weber

diamonds. We then apply the Beenakker formalism, de-

veloped to account for dissipation in a quantum dot [8],

to the case of a superconducting strip, with the dissipa-

tion being provided via the normal modes of the vortex

‘crystal’ in the strip. Within this dissipative model, we

predict that the resistivity of the strip should diverge—

possibly observably—at low temperatures, as a power

law. We conclude with a comparison of our results with

experimental data, and thus show that our energetic con-

siderations correctly account for period of the magneto-

resistance oscillations observed experimentally.
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FIG. 1: (a) Schematic representation of the experimental
setup. A superconducting strip (gray) is immersed in a mag-
netic field B pointing out of the plane of the strip. The strip
is contacted by a pair of leads (blue) that are used to pass the
bias supercurrent J along the length of the strip. Simultane-
ously, the time-averaged voltage is measured using the same
leads. Vortices (depicted by swirls) reside in the strip but,
occasionally, traverse the strip (cf. the vortex trajectory de-
picted by arrows). Via the Josephson relation, such crossings
correspond to voltage spikes, and thus result in dissipation.
(b) Analogous quantum-dot circuit. The dot is depicted by
the gray disc. The vortices and the magnetic field in the strip
respectively correspond to the electrons and the gate voltage
Vg of the dot, the latter controlling the mean number of parti-
cles on the dot. The source and drain for the vortices are the
vacua adjacent to the strip. These vacua can be regarded as
vortex condensates (green), with the potential energy differ-
ence between the condensates set by the bias current. Thus, J
in the vortex analogy corresponds to the source-drain voltage
VS − VD in the dot picture (see text for details).

Setup – We are concerned with describing the current-
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Superconductor-Insulator Magneto-Oscillations in Superconducting Strips

Yeshayahu Atzmon1 and Efrat Shimshoni1
1Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

(Dated: October 5, 2010)

The magnetoresistance of thin superconducting (SC) strips subject to a perpendicular magnetic
field B and low temperatures T manifests a sequence of alternating SC–insulator transitions (SIT).
We study this phenomenon within a quasi one-dimensional (1D) model for the quantum dynamics
of vortices in a line-junction between coupled parallel SC wires, at parameters close to their SIT.
Mapping the vortex system to 1D Fermions at a chemical potential dictated by B, we find that a
quantum phase transition of the Ising type occurs at critical values of the vortex filling, from a SC
phase near integer filling to an insulator near 1/2–filling. For T → 0, the resulting magnetoresistance
R(B) exhibits oscillations similar to the experimental observation.

PACS numbers:

The conduction properties of low–dimensional super-
conducting (SC) systems (thin films and wires) are
strongly dominated by fluctuations in the SC order pa-
rameter. A particularly prominent manifestation of the
role of fluctuations is the appearance of a finite dissi-
pative resistance below the mean–field critical tempera-
ture Tc of the bulk superconductor. At low temperatures
T ! Tc, the dominant fluctuations are in the phase of
the complex order parameter. Most notably, topological
excitations (vortices and phase–slips) can generate dis-
sipation in their liquid state. In the T → 0 limit, their
quantum dynamics becomes significant and may drive a
transition to a metallic or insulating state [1, 2].

In the one–dimensional (1D) case, i.e. SC wires of
width and thickness smaller than the coherence length ξ,
the resistance essentially never vanishes at finite T due
to thermal activation of phase–slips [3, 4] (for T ! Tc)
or their quantum tunneling at lower T [2, 5, 6]. In con-
trast, in the 2D case (SC films) superconductivity is well-
established at sufficiently low T . However, a quantum
(T → 0) superconductor–insulator transition (SIT) [1, 7]
can be tuned by an external parameter which leads to
proliferation of free vortices. Employing charge–flux du-
ality [8] it is possible to view the SC phase as a vortex
solid, and the insulator as a vortex superfluid.

A convenient means of inducing a SIT in SC films
is by application of a perpendicular magnetic field B.
At fixed T , a positive magnetoresistance R(B) is typi-
cally observed in a wide range of B. The SIT is then
clearly indicated in the data as a crossing point of these
isotherms at a critical field Bc, separating a SC phase
(where dR/dT > 0) for B < Bc from the insulating phase
(dR/dT < 0) for B > Bc.

A recent experimental study of a strip geometry [9]
– namely, a SC wire of width comparable to ξ – offers
an opportunity to probe the crossover from a 1D to 2D
quantum dynamics of the topological phase–defects in SC
devices. The prominent observation is that in the pres-
ence of a perpendicular field B, the magnetoresistance
R(B) exhibits oscillations which amplitude is sharply in-
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FIG. 1: (color online) Isotherms of R as a function of B,
for J = 1.06K, h = 0.98K, v

−
/L = 0.01K [see text]. Inset:

R vs. the gap ∆d [see text] near a single critical point, for
T = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5K.

creasing at low T , in striking resemblance to the behavior
of Josephson arrays [10] and SC network systems [11].
Moreover, the SIT at Bc appears to be preempted by
several consecutive transitions at lower fields, from a SC
to an insulator or vice versa alternately.

The periodicity of the above mentioned oscillations is
consistent with a single flux penetration to the sample,
suggesting that the observed SC or insulating behavior
of the system is determined by commensuration of vor-
tices within the strip area [12]. In particular, when an
integer number of vortices can be fitted along the strip
length, superconductivity may be supported even at suf-
ficiently high B such that a large fraction of the sample
area turns normal. However deviation from commensu-
rability of the vortex filling weakens superconductivity,
possibly inducing a transition to a metallic [10] or insu-
lating state.

In the present paper, we investigate this phenomenon
within a theoretical model for vortices in a SC strip which
addresses the low T transport behavior close to the SIT
(i.e., for B ! Bc). Assuming that the high vortex den-

Multiple SIT theory



Multiple SIT theory

Here � is Planck’s constant, D is the diffusion coefficient in the normal state, kB is the Boltzmann

constant, and Tc is the critical T . D is calculated from the Einstein relation, using a charge carrier

density of 5x1020 cm−3. The estimated value for ξ is 30 ± 5 nm. Featuring a length of 2 µm, a

width of 200 nm, and a thickness of 30 nm, the film strips are to be considered as two dimensional,

while close to the crossover to a one dimensional system.
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Figure 1: Isotherms of R vs. B from T=0.01 K (purple) to T=1 K (red) in steps of 0.1 K. Note the

logarithmic scale for R. Inset: R vs. T at B=0 for a typical 200 nm wide highly disordered a:InO

film strip.

In the main frame of Fig. 1, we show isotherms of R vs. B applied perpendicular to the

plane of sample P32D2Na. The sample has an overall increase in R with increasing B, reaching a

value of 27.4 kΩ at B=12 T and T=0.01 K. This is well above RN=13.0 kΩ, showing that the high

B has driven the film strip into an insulating state, which is in good qualitative agreement with

a recent study 22 of superconducting wires of a:InO. In addition to the overall increase in R, the

narrow film strip is displaying strong fluctuations in R at lower Bs and T s. Upon inspecting the T
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Critical current

12

8

4

0

dV
/d

I (
10

3 Ω
)

-200 -100 0 100 200
Idc (10-9A)

P32D2Da
T=0.012 KB=0 T

B=0.7 T

B=0.1 T

5

4

3

2

1

0

R 
(1

03 Ω
)

1.00.80.60.40.20
B⊥(Τ)

P32D2Da
T=0.012 K



12

10

8

6

4

2

0

dV
/d

I (
10

3 Oh
m

)

-200 -100 0 100 200
I (10-9A)

12

10

8

6

4

2

R 
(1

03 !
)

1.21.00.80.60.40.20

B"(#)

P32D2a/200/2
T=0.2-1.2 K



12

10

8

6

4

2

0

dV
/d

I (
10

3 Oh
m

)

-200 -100 0 100 200
I (10-9A)

12

10

8

6

4

2

R 
(1

03 !
)

1.21.00.80.60.40.20

B"(#)

P32D2a/200/2
T=0.2-1.2 K



Material

Shapira and Deutscher, PRB ‘83



Summary

B-driven, reentrant 
insulator
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